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ABSTRACT

State-of-the-art hypergraph partitioners follow the multilevel par-
adigm that constructs multiple levels of progressively coarser hy-
pergraphs that are used to drive cut refinements on each level of
the hierarchy. Multilevel partitioners are subject to two limitations:
(i) Hypergraph coarsening processes rely on local neighborhood
structure without fully considering the global structure of the hyper-
graph. (ii) Refinement heuristics can stagnate on local minima. In
this paper, we describe SpecPart, the first supervised spectral frame-
work that directly tackles these two limitations. SpecPart solves a
generalized eigenvalue problem that captures the balanced partition-
ing objective and global hypergraph structure in a low-dimensional
vertex embedding while leveraging initial high-quality solutions
from multilevel partitioners as hints. SpecPart further constructs
a family of trees from the vertex embedding and partitions them
with a tree-sweeping algorithm. Then, a novel overlay of multiple
tree-based partitioning solutions, followed by lifting to a coarsened
hypergraph, where an ILP partitioning instance is solved to alleviate
local stagnation. We have validated SpecPart on multiple sets of
benchmarks. Experimental results show that for some benchmarks,
our SpecPart can substantially improve the cutsize by more than 50%
with respect to the best published solutions obtained with leading
partitioners hMETIS and KaHyPar.

CCS CONCEPTS

• Hardware→ Physical design (EDA); • Theory of computation
→ Design and analysis of algorithms.
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1 INTRODUCTION

Hypergraphs are a generalization of graphs where hyperedges, the
counterpart of edges in a graph, can connect more than two vertices.
A fundamental NP-hard problem related to hypergraphs is to parti-
tion all the vertices into balanced blocks such that each block has
bounded size and the cutsize, i.e, the number of spanning multiple
blocks, is minimized. This balanced hypergraph partitioning has
been a well-studied, fundamental combinatorial optimization prob-
lem with application throughout VLSI CAD. Balanced partitioning
can also enable efficient distributed computations when solving area-
constrained hypergraph optimization problems. Many hypergraph
partitioners have been proposed over the past decades. State-of-
the-art hypergraph partitioners, includingMLPart [21], PaToH [9],
KaHyPar [24], and hMETIS [6], usually follow the multilevel par-
adigm [6]. The multilevel paradigm constructs a hierarchy of pro-
gressively coarser hypergraphs using local clustering heuristics [24],
partitions the coarsest hypergraph, then uncoarsens, and refines the
partitioning solution at each level of the hierarchy [11, 14].

Multilevel partitioners are powerful but subject to two limitations.
The first stems from the propensity of partition refinement heuristics
to become trapped on local minima that persist through levels in the
hierarchy. It is reasonable to hypothesize that any given solution
obtained by a multilevel partitioner is ‘in the vicinity’ of potentially
much better solutions. However, finding such solutions may require
some type of global understanding of the hypergraph. That brings us
to the second limitation of the multilevel paradigm: the coarsening
phase and refinement decisions are usually based on local structure
and greedy computational objectives, hence the global structure of
the hypergraph is not explicitly taken into account.
We thus consider a cut obtained by a multilevel partitioner as a

hint for a better solution and set out to design a solution improvement
method that leverages the hint while using global structural informa-
tion. This kind of global structure of the hypergraph can be exposed
by spectral algorithms [26–29] based on the well-known Cheeger in-
equality [31]. Spectral partitioning algorithms have been generalized
by Cucuringu et al. [1] to supervised partitioning instances, e.g. in-
stances where a hint is available. More specifically, the algorithm
of [1] formulates supervised partitioning as a generalized eigenvalue
problem satisfying a generalized Cheeger inequality. This suggests
a clear direction towards obtaining improved partitioning solutions.

We propose SpecPart, the first supervised spectral framework for
hypergraph partitioning solution improvement. In this work, we focus
on the bipartitioning problem which is often used as a subroutine in
:-way partitioners.

https://doi.org/10.1145/3508352.3549390
https://doi.org/10.1145/3508352.3549390
https://doi.org/10.1145/3508352.3549390
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Our contributions include:
• A novel method that incorporates pre-computed hint solutions into
a generalized eigenvalue problem. The computed eigenvectors
yield high-quality vertex embeddings that are superior to those ob-
tained without supervision. Importantly, our carefully engineered
code yields a practically fast implementation. [Section 4.1].

• A novel algorithm for converting a vertex embedding into a parti-
tioning solution. The algorithm uses the embedding to construct
a family of trees that in some sense distill the cut structure of
the hypergraph. Then, fast algorithms can be used on the tree to
explore a large space of candidate solutions from which the best
can be picked. [Section 4.2].

• A novel cut overlay method for improving a small pool of initial
solutions. Specifically, we compute clusters by removing from the
hypergraph the union of the hyperedges cut by any of the solutions
in the pool. The size of the clustered hypergraph is small, but it
nearly always contains an improved solution that can often be
computed optimally using an ILP formulation. [Section 3].

• We have validated SpecPart on multiple benchmark sets (ISPD98
VLSI Circuit Benchmark Suite [4], Titan23 [8] and Industrial
benchmarks from a leading FPGA company) with state-of-the-art
partitioners (hMETIS [6] and KaHyPar [24]). Experimental results
show that for some benchmarks, our SpecPart can substantially
improve the cutsize by more than 50% with respect to hMETIS
and/or KaHyPar. [Section 5.1].

• We apply autotuning to tune the hyperparameters of existing par-
titioners and generate a better initial solution for SpecPart. Ex-
periments suggest that the autotuning-based SpecPart can further
push the leaderboard for these benchmarks. [Section 5.3].
SpecPart draws strength from recent theoretical and algorithmic

progress [1, 18, 20, 22]. In particular, a careful choice of the nu-
merical solvers enables a very efficient implementation. Moreover,
SpecPart’s capacity to include supervision information makes it po-
tentially even more powerful in industrial pipelines. We thus believe
that our work may eventually lead to a departure from the multilevel
paradigm that has dominated the field for the past quarter-century.

2 PRELIMINARIES

2.1 Hypergraph Partitioning Formulation

In a hypergraph � (+ , �), + is a set of vertices with each vertex
E ∈ + associated with a weight FE , and � is a set of hyperedges
where a hyperedge 4 ∈ � is a subset of + . Each hyperedge 4 can
be also associated with a weight F4 . Given a positive integer :

(: ≥ 2) and a positive real number n (n ≤ 1.0
:
), the :-way balanced

hypergraph partitioning problem is to partition + into : disjoint
blocks ( = {+0,+1, ...,+:−1} such that (letting, =

∑
E∈+ FE)

• (1/: − n), ≤ ∑
E∈+8 FE ≤ (1/: + n), , for 0 ≤ 8 ≤ :-1

• 2DCB8I4� (() = ∑
{4 |4*+8 for any 8 }F4 is minimized

Here : is the number of blocks in the partitioning solution, n is the
allowed imbalance between blocks, +8 is a partition block and we
say that ( is an n-balanced partitioning solution.

2.2 Laplacians, Cuts and Eigenvectors

Suppose � = (+ , �,F) is a weighted graph. The Laplacian matrix
!� of � is defined as follows: (i) !(D, E) = −F4DE if D ≠ E and
(ii) !(D,D) = ∑

E≠D F4DE . Let G be an indicator vector for the biparti-
tion solution ( = {+0,+1} containing 1s in entries corresponding to
+1, and 0s everywhere else (+0). Then, we have

G) !G = 2DCB8I4� (() . (1)

Let us now consider an example of how balanced graph bipartitioning
relates to spectral methods. Let  be the Laplacian of a complete
unweighted graph on + . Using expression (1), we have

'(G) , G) !G

G) G
=
2DCB8I4� (()
|( | · |+ − ( | .

Minimizing '(G) over 0-1 vectors G incentivizes a small 2DCB8I4 (()
with a simultaneous balance between |( | and |+ − ( |, hence '(G)
can be viewed as a proxy for the balanced partitioning objective.
We can relax the problem over the real vectors G constrained to be
orthogonal to the common null space of ! and . It is well understood
that the minimum is achieved by the first non-trivial eigenvector of
the problem !G = _ G.

2.3 Spectral Embeddings and Partitioning

Spectral graph partitioning algorithms embed the vertices of an input
graph� into a<-dimensional space and then cluster the points in this
geometric space. The vertex embedding comes from the computation
of< non-trivial eigenvectors of an appropriate eigenvalue problem
involving the Laplacian !� of the graph � . More specifically, if

- ∈ R |+ |×< is the matrix containing< (column) eigenvectors, then
row -D of - is the embedding of vertex D.
Spectral algorithms have also been used for hypergraph parti-

tioning. In this context, the hypergraph � is first transformed to a
corresponding graph� , and then the spectral embedding is computed
using !� . For example, the eigenvalue problem solved in [26] is

!�G = _�FG (2)

where �F is the diagonal matrix containing positive vertex weights.
In this paper we solve the more general problem

!�G = _�G (3)

where � is also a graph Laplacian. In practical instances, hypergraphs
are ‘essentially’ connected with possibly a few outstanding vertices
and edges that can be processed separately. Thus, since � can be
considered connected, the problem is well-defined even if � does
not correspond to a connected graph, because !� ’s null space is a
subspace of that of � [19]. This enables us to handle zero vertex
weights as required in practice, and to encode in a natural ‘graphical’
way prior supervision information into the matrix �.

Term Description

� (+ , �) Hypergraph � with vertices + and hyperedges �

�2 (+2 , �2 )
Clustered hypergraph �2 where each vertex E2 in +2
corresponds to a group of vertices in � (+ , �)

� (+ , �) Graph � with vertices + and edges �

�̃ Spectral sparsifier of �

) (+ , �) ) Tree ) with vertices + and edges �)
D, E Vertices in +

4DE Edge or hyperedge connecting D and E

4) Edge of tree )

FE,F4 Weight of vertex E , or hyperedge 4, respectively

: Number of blocks in a partitioning solution

( Partitioning solution, ( = {+0,+1, ...,+:−1}
n Allowed imbalance (1-49) between blocks in (
2DC (() Cut of ( , 2DC (() = {4 |4 ∉ +8 for any 8}
2DC(8I4� (() Cutsize of ( on (hyper)graph � .

ISSHP Iterative Supervised Spectral Hypergraph Partitioning

Table 1: Notation
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Parameter Description (default setting)

< Number of eigenvectors (< = 2)
g Number of trees (g = 8)
X Number of best solutions (X = 5)
V Number of iterations of ISSHP (V = 2)

Z Number of random cycles (Z = 2)
W Threshold of number of hyperedges (W = 300)
\ Number of iterations of eigenvalue solver (\ = 80)

Table 2: Parameters of SpecPart framework.

2.4 ILP for Hypergraph Partitioning

Hypergraph partitioning can be solved optimally by casting the prob-
lem as an integer linear program (ILP) [23]. To write balanced hyper-
graph partitioning as an ILP, for each block +8 we introduce integer
{0,1} variables, GE,8 for each vertex E , and ~4,8 for each hyperedge 4,
and require that:

• GE,8 = 1 if E ∈ +8 • ~4,8 = 1 if 4 ⊆ +8
We then define the following constraints for each 8 ∈ [0, : − 1]:
• (1/: − n), ≤ ∑

E∈+8 FEGE,8 ≤ (1/: + n),
• ∑:−1

9=0 GE,9 = 1 for E ∈ +
• ~4,8 ≤ GE,8 for each 4 ∈ �, and each E ∈ 4
where, =

∑
E∈+ FE . The objective is

"0G8<8I4
∑
4∈�

∑
0≤8≤:−1

F4~4,8 .

3 SPECPART: AN OVERVIEW

The architecture of our SpecPart framework is shown in Figure 1.
The input is a hypergraph � (+ , �), an initial partitioning solution
(8=8C , and n, the allowed imbalance between blocks in a partition-
ing solution. The output is an improved partitioning solution (>DC .
Here the initial partitioning solution (8=8C can come from any source,

including available open-source partitioners.1

Figure 1: Overview of the SpecPart framework.

The SpecPart framework consists of two major components:

1. Iterative Supervised Spectral Hypergraph Partitioning.

ISSHP constitutes the fundamental algorithmic core of SpecPart.
The initial solution (8=8C is incorporated into a generalized eigenvalue
problem in order to generate a vertex embedding (Section 4.1). With
the hint from ( = (8=8C , the vertex embedding from the generalized
eigenvalue problem is of higher quality relative to that obtained
from the standard eigenvalue problem, as illustrated in Figure 2. The
embedding is used to compute a family of trees that — in some sense

1The input initial solution (8=8C may even be a partial solution where block membership
information is given for only some of the vertices. This may be potentially useful in
practical situations but we do not consider it further in this paper.

Figure 2: Two vertex embeddings of ISPD IBM14 benchmark. Both are

based on the smallest two eigenvectors, computed without supervision

(Eq. 2) and with supervision (Eq. 3). The red and blue dots highlight

vertices bipartitioned by hMETIS with n = 2. With supervision, the

distinction between the bipartitioned vertices is cleaner.

— distill the cut structure of the hypergraph (Section 4.2). Then, fast
tree-based algorithms are employed to find the best solution (14BC
on those trees. Finally, we set ( = (14BC and the process iterates.

2. Cut-Overlay Clustering and Optimal-Attempt Partitioning.

In the course of its iterations, ISSHP generates a collection of dif-
ferent solutions. We select the X best solutions, denoted as “candidate
partitioning solutions” in Figure 1.

Cut-Overlay clustering. Let �1, . . . , �X ⊂ � be the sets of hy-
peredges cut in the X candidate solutions. We remove the union of
these sets from � to yield a number of connected clusters. Then, we
perform a cluster contraction process that is standard in multilevel
partitioners, to give rise to a clustered hypergraph�2 (+2 , �2 ). A solu-
tion on �2 can be “lifted” to � , and by construction it is guaranteed
that �2 contains a solution which is at least as good as the best
among the cuts �8 .

Optimal-Attempt Partitioning.While one would expect that �2
has not many more than 2X vertices, empirically we often observe
hundreds of vertices and hyperedges (e.g., even for X = 5). Given
such a size for �2 , we would also expect that it is infeasible to
run an ILP-based partitioner on it. Remarkably, due to the special
generative process that yields �2 , it is often the case that the ILP
computes within stringent walltime a solution that is better than any
of the X solutions in the pool. In our current implementation, we
include a parameter W ; in the case when the number of hyperedges in
�2 is larger than W (default value of W is 300) we run hMETIS on �2 .

4 THE ISSHP ALGORITHM

The Iterative Supervised Spectral Hypergraph Partitioning (ISSHP)
process is described in Algorithm 1, with pointers to subsequent
sections that discuss the details.

4.1 Vertex Embedding Generation

In order to generate a vertex embedding, we need to construct the
generalized eigenvalue problem and compute the first< nontrivial
eigenvectors. Here < is the number of eigenvectors that we use,
which is set to 2 by default.

4.1.1 Clique Expansion Graph: We define the clique expan-
sion graph � of the hypergraph � , as a sum, i.e., superposition,
of weighted cliques; the clique corresponding to edge 4 ∈ � has

the same vertices as 4 and edge weights 1
|4 |−1 . Graph � has size∑

4∈� |4 |2 where |4 | is the size of hyperedge 4. This is usually quite
large relative to the input size |� | = ∑

4∈� |4 |. For this reason we only
construct a function 5!� that evaluates matrix-vector products of
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Algorithm 1: ISSHP:
Iterative Supervised Spectral Hypergraph Partitioning.

Input: Hypergraph � (+ , �) , Initial partitioning solution (14BC
Output: Candidate partitioning solutions {(2 9 }

1 Construct the Laplacian !� of the clique expansion for � (4.1.1)

2 Construct the Laplacian �10B4 of weight-balance graph (4.1.2)

3 for 8 = 0; 8 < V ; 8 + + do
4 Construct Laplacian �(14BC based on hint (14BC (4.1.3)

5 Let � = �10B4 + �(14BC
6 Solve the generalized eigenvalue problem !�G = _�G to

compute< nontrivial eigenvectors (4.1.5)

7 Construct a family of trees {)8 9 } based on computed
eigenvectors (4.2)

8 Generate candidate solutions {(8 9 } by running tree-sweep and
METIS on trees {)8 9 } (4.3)

9 Set (14BC to the best partitioning solution in {(8 9 }
10 end

11 Construct {(2 9 } by picking the best X solutions from {{(8 9 }}
12 return {(2 9 }

the form !�G , where !� is the Laplacian of � , which is all we need
to perform the eigenvector computation. In all places where Algo-
rithm 1 mentions the construction of any Laplacian, we construct the
equivalent function for evaluating matrix-vector products. This is
further justified in Section 4.1.5. The function 5!� is an application
of the following identity that is based on expressing !� as a sum of
Laplacians of cliques:

!�G =
∑
4∈�

1
|4 | − 1

(
G − G) 1e

1e) 1e
· 1e

)
, (4)

where 1e is the 1-0 vector with 1s in the entries corresponding to
the vertices in 4. By exploiting the sparsity in 1e, the product is
implemented to run in $ ( |� |) time.
4.1.2 Weight-Balance Graph: The weight-balance graph�F is a
complete weighted graph used to capture arbitrary vertex weights and
incentivize balanced cuts, as we elaborate in Section 4.1.4.�F has
the same vertices as hypergraph � , and edges of weight FD · FE
between any two vertices D and E . LetF+8 be the weight of block +8
in a partitioning solution ( , i.e.,

F+8 =
∑
E∈+8

FE . (5)

We have

F+0 ·F+1 =
∑
E∈+0

FE ·
∑
E∈+1

FE =
∑

E∈+0,D∈+1
FE ·FD

=
∑

E∈+0,D∈+1
F4ED = 2DCB8I4�F

(() (6)

We now discuss how to compute matrix-vector products with the
Laplacian matrix of �F , which we denote by �10B4 . Let w be the
vector of vertex weights. We have the identity

�10B4G = w ◦ G − G) 1

1) 1
·w, (7)

where 1 is the all-ones vector and ◦ denotes the Hadamard product.
Clearly, this can be carried out in time $ ( |+ |).

In general any vector G can be written in the form G = ~ + 21,
where ~) 1 = 0. Substituting this decomposition of G into the above
equation, we get that �10B4G = w ◦~. In other words, �10B4 acts like
a diagonal matrix on ~ and nullifies the constant component of G .

4.1.3 Hint Graph: The hint graph�ℎ is a complete bipartite graph
on the two vertex sets +0 and +1 defined by the hint solution (14BC .
It is used to incentivize the computation of cuts that are similar to
(14BC , as elaborated in Section 4.1.4. If �(14BC denotes the Laplacian
of the hint graph,

�(14BC G = (G− G
) 1

1) 1
·1) − (G−

G) 1V0

1)
+0
1+0

·1V0 ) − (G−
G) 1V1

1)
+1
1+1

·1V1 ) (8)

where 1+8 denotes the 1-0 vector with 1s in entries corresponding
to the vertices in +8 . By exploiting the sparsity in 1+8 , the product is
implemented in $ ( |+ |) time.

4.1.4 Intuition on the constructed graphs: We solve the gen-
eralized eigenvalue problem !�G = _�G , where � = �10B4 + �(14BC .
From the discussion in Section 2.2 recall that the eigenvalue problem
is directly related to solving

min
G
'(G) = min

G

G) !�G

G)�G
= min

G

G) !�G

G)�10B4G + G)�(14BC G
(9)

over the real vectors G . Recall also that this is a relaxation of the
minimization problem over 0-1 cut indicator vectors. Let G( be the
indicator vector for some set ( ⊂ + . Then, using Equation (1) we
have:
• G)

(
!�G( = 2DCB8I4� (() which is a proxy for 2DCB8I4� ((). Thus,

the numerator incentivizes smaller cuts in � .
• G)

(
�10B4G( = 2DCB8I4�F

((). By Equation (6), this is equal to
F( ·F+−( , whereF( is the total weight of the vertices in ( . Thus
the denominator incentivizes a large F( ·F+−( , which implies
balance.

• G)
(
�(14BC G( is maximized when all edges of�ℎ8=C are cut, thus the

denominator incentivizes cutting many edges that are also cut by
the hint.

Figure 3: Graphs used in ISSHP, Algorithm 1.
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4.1.5 Computation: We solve the generalized eigenvalue problem
!�G = _�G using the preconditioned eigensolver LOBPCG [13]. Due
to its iterative nature, LOBPCG does not require explicit matrices !�
and �, but merely functions that evaluate matrix-vector products with
them. For fast computation, the solver can utilize a preconditioner
for !� , also in an implicit functional form. To compute the precon-

ditioner we first obtain an explicit graph �̃ that is spectrally-similar
with � and has size at most 3|� |, where |� | = ∑

4∈� |4 |. More specifi-

cally, we build �̃ by replacing every hyperedge 4 in � with the sum
of 3 uniformly weighted random cycles on the vertices +4 of 4. This
is an essentially optimal sparse spectral approximation for the clique

on +4 .
2 Since � is a sum of cliques, and �̂ is a sum of tight spec-

tral approximations of cliques, standard graph support theory [38]

implies that �̂ is a tight spectral approximation for � . Finally, we
compute a preconditioner of !

�̂
using the CMG algorithm [20]; by

transitivity [38], it is also a preconditioner for !� .

4.2 Tree Construction

After solving the generalized eigenvalue problem, we have a matrix

- ∈ R |+ |×< of< computed eigenvectors {G1, G2, ..., G<} that we use
to construct a number of trees on + .

4.2.1 Paths. We first use a standard linear ordering algorithm [39]
to obtain a path graph for each eigenvector G8 , by sorting the vertices
in + based on G8 in non-decreasing order and connecting the sorted
vertices in that order. The path graph is implicit in the proof of the
Cheeger inequality [31] which shows that a relatively good cut of
the graph into two parts can be found by sweeping over the = − 1
tree cuts. We thus use the< eigenvectors to construct< path graphs
in total. These path graphs naturally arrange together vertices with
similar global positioning, but neighboring nodes in the path are not
necessarily neighbors in the original hypergraph � . That means the
local neighborhood information is not fully preserved in the paths.

4.2.2 Clique Expansion Spanning Trees. To address the issue
of preserving local information, we work with a weighted graph
that reflects both the connectivity of � and the global information
contained in the embedding, adapting an idea that has been used in
work on :-way Cheeger inequalities [22].

Concretely, we form a graph �̂ by replacing every edge 4 of� with
a sum of Z cycles (as discussed also in Section 4.1.5). Suppose that

. ∈ R |+ |×3 is an embedding matrix and denote by .D the row of .
containing the embedding of vertex D. We construct the weighted

graph �̂. by setting the length of each edge 4DE ∈ �̂ to | |.D − .E | |2,
i.e., equal to the Euclidean distance between the two vertices in the

embedding. We will be computing spanning trees of �̂. .

LSST: A desired property for a spanning tree )̂ of �̂. is to pre-

serve the embedding information contained in �̂ as faithfully as

possible. Thus, we let )̂ be a Low Stretch Spanning Tree (LSST)

of �̂ , which by definition means that the length ; (4DE) of each edge
in �̂ is approximated on average, and up to a small function 5 ( |+ |),
by the distance between the nodes D and E in )̂ [2]. We compute the
LSST using the AKPW algorithm of Alon et al. [2]. The output of
the AKPW algorithm depends on the vertex ordering of its input. To
make it invariant to the vertex ordering in the original hypergraph � ,

2The construction relies on theory about the asymptotic properties of random 3-regular
expanders (e.g., see [32] or Theorem 4.16 in [33]). For the hyperedges in our context,
the near-optimality of our construction can also be verified numerically.

we reorder �̂. using the order induced by sorting the smallest non-
trivial eigenvector computed earlier. Empirically, this order has the
advantage of producing slightly better LSSTs.
MST: A graph can contain multiple different LSSTs, with each

of them approximating to different degrees the length ; (4DE) for
any given 4DE . It should also be noted that the AKPW algorithm
is known to be suboptimal with respect to the approximation fac-
tor 5 ( |+ |); more sophisticated algorithms exist but they are far from
practical. For these reasons we also compute a Minimum Spanning

Tree of �̂ . For most weighted graphs an MST can be viewed as an
easy-to-compute proxy to an LSST, which potentially has better or
complementary distance-preserving properties relative to the tree
computed by the AKPW algorithm. We construct the MST using
Kruskal’s algorithm [3].

4.2.3 Family of Trees. Recall now that we have a matrix - of<

eigenvectors. We construct the LSST and MST for the graphs �̂-8

for 8 = 1, . . . ,<., and for the graph �̂- . Along with the path graphs,
these comprise a family � of trees. In total, we have g =<+2×(<+1)
trees, comprised of< path graphs,< + 1MSTs, and< + 1 LSSTs.
In the default setting, g = 8.

4.3 Cut Distilling and Partitioning on a Tree

Wewill use each tree) in the family of trees to distill the cut structure
of � over ) , in the following sense: For any fixed tree ) = (+ , �) ),
observe that the removal of an edge 4) of ) yields a partitioning
(4) ⊂ + and thus of the original hypergraph � . We would thus like
to reweight each edge 4 ∈ �) with the corresponding 2DCB8I4� ((4) ).

Computing these edgeweights on) can be done in$ (∑4 |4 | log |4 |)
time, via an elaborate algorithm involving the computation of least
common ancestors (LCA) on ) , in combination with dynamic pro-
gramming on ) . We now describe the main idea by example; the
omitted details can be found in our code.

Figure 4: Hyperedge, junctions and their numerical labels

.

We consider) to be rooted at an arbitrary vertex. In the example of
Figure 4, consider hyperedge 4 = {E1, E5, E9}. The LCA of its nodes
is E7. Then, the weight of 4 should be accounted for the set �4 ⊂ �)
of all tree edges that are ancestors of {E1, E5, E9} and descendants
of E7. We do this as follows. (i) We compute a set of junction vertices
that are LCAs of {E1, E5} and {E1, E5, E9}. (ii) We then “label” these
junctions with −F4 , whereF4 is the weight of 4. More generally, for
a hyperedge e={E81 , . . . , E8: } ordered according to) , we calculate the
LCAs for the:−1 sets {E81 , . . . , E8 9 } for 9 = 2, . . . , : , and the junctions
are labeled with appropriate negative multiples ofF4 . We also label
the vertices in 4 withF4 . (iii) All other vertices are implicitly labeled
with 0. Consider an arbitrary edge 4) of the tree, and compute the sum-
below-4) , i.e., the sum of the labels of vertices that are descendants of
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4) . This will beF4 on all edges of�4 and 0 otherwise, thus correctly
accounting for the hyperedge 4 on the intended set of edges �4 .
In order to compute the correct total counts on all tree edges,

we iterate over hyperedges, compute their junctions and tally the
associated labels. Then, for any tree edge 4) , the sum-below-4) will
equal 2DCB8I4� ((4) ). These sums can be computed in $ ( |+ |) time,
via dynamic programming on ) . A similar application of dynamic
programming can compute the total weight of the vertices that lie
below 4) on ) . We can thus compute the value for the balanced
cut objective for (4) and pick the (4) that minimizes the objective
among the = − 1 cuts suggested by the tree.
For a partition ( ⊂ + that cuts more than one edge on ) we have

2DC(8I4� (() ≤ 2DC(8I4) ((), and owing to the spectral origin of )
we hope that 2DC(8I4) (() can provide a good proxy for 2DC(8I4� (()
the cuts of � . Therefore, we use METIS [5] to solve a balanced
partitioning problem on the reweighted tree, with the original vertex
weights from� . This can potentially return a partition ( ⊂ + that cuts
more than one edge on ) . In some cases we do get 2DC(8I4� (() ≤
2DC(8I4� ((4) ), thus further improving the solution.

5 EXPERIMENTAL VALIDATION

The SpecPart framework is implemented in Julia andwe provide both
Julia and Python interfaces. We use CPLEX [36] and LOBPCG [17]
as our ILP solver and eigenvalue solver respectively. We run all
experiments on a server with 56 Xeon E5-2650L, 1.70GHz proces-
sors and 256 GB memory. We have compared our framework with

two state-of-the-art hypergraph partitioners3 (hMETIS [6] and KaHy-
Par [24]) on three different sets of benchmarks (ISPD98 VLSI Circuit
Benchmark Suite [4], Titan23 Suite [8] and Industrial Benchmark

Suite from a leading FPGA company).4 The statistics of these bench-
marks are summarized in Table 3, Table 4 and Table 5 respectively.

Statistics �4BC (?42%0AC �4BCF (?42%0ACF
Benchmark |+ | |� | n = 2/10 n = 2/10 n = 2/10 n = 2/10
IBM01 12752 14111 203 [7] / 180 [43] 202 / 171 227 [44] / 215 [43] 215 / 197
IBM02 19601 19584 354 [43] / 262 [43] 336 / 262 266 [43] / 266 [45] 282 / 256
IBM03 23136 27401 957 [4] / 956 [7] 959 / 952 748 [43] / 681 [43] 813 / 541
IBM04 27507 31970 595 [43] / 542 [43] 593 / 388 506 [43] / 440 [43] 476 / 393
IBM05 29347 28446 1733 [43] / 1715 [7] 1720 / 1688 1727 [43] / 1716 [44] 1724 / 1692
IBM06 32498 34826 978 [43] / 885 [43] 963 / 733 531 [43] / 367 [43] 500 / 306
IBM07 45926 48117 951 [43] / 853 [43] 935 / 760 739 [43] / 737 [43] 776 / 634
IBM08 51309 50513 1159 [4] / 1159 [4] 1146 / 1140 1188 [43] / 1157 [43] 1196 / 1116
IBM09 53395 60902 629 [43] / 624 [25] 620 / 519 523 [43] / 523 [43] 519 / 519
IBM10 69429 75196 1333 [43] / 1254 [25] 1318 / 1261 1133 [43] / 756 [43] 1076 / 443
IBM11 70558 81454 1071 [43] / 960 [25] 1062 / 764 781 [43] / 695 [43] 765 / 649
IBM12 71076 77240 1918 [43] / 1872 [25] 1920 / 1842 1998 [43] / 1982 [43] 1965 / 1973
IBM13 84199 99666 859 [43] / 832 [25] 848 / 693 902 [43] / 833 [43] 843 / 822
IBM14 147605 152772 1865 [43] / 1805 [25] 1859 / 1768 1772 [43] / 1527 [43] 1819 / 1339
IBM15 161570 186608 2833 [43] / 2622 [25] 2741 / 2235 2099 [43] / 1801 [43] 1904 / 1605
IBM16 183484 190048 2059 [43] / 1720 [25] 1951 / 1619 1692 [43] / 1668 [43] 1623 / 1619
IBM17 185495 189581 2403 [43] / 2210 [25] 2354 / 1989 2353 [43] / 2257 [43] 2270 / 2008
IBM18 210613 201920 1587 [43] / 1541 [43] 1535 / 1537 1664 [43] / 1522 [43] 1612 / 1532

Table 3: Statistics of ISPD98 VLSI circuit benchmark suite [4]. �4BC and

�4BCF represent the best published cutsizes for unit weights and actual

weights respectively. (?42%0AC and (?42%0ACF represent the cutsizes

generated by SpecPart for unit weights and actual weights respectively.

5.1 Experimental Results

In this section, we present the experimental results of SpecPart with

default parameter setting.5 We run SpecPart as follows. Given a
hypergraph� and an imbalance factor n, we first run hMETIS and/or

3We do not compare our results with PaToH since it generates weaker cuts compared
to hMETIS and KaHyPar on the ISPD98, Titan23 and industrial benchmarks.
4We make public with permissive open-source license all partition solutions, scripts
and code at [41].
5The default values for parameters (X , V , W , Z , \ and<) are shown in Table 1.

KaHyPar on� to generate an initial partitioning solution (8=8C , which
is leveraged by SpecPart as a “hint” to generate an improved partition
(>DC . Here we run hMETIS andKaHyParwith their respective default

parameter settings.6 To avoid any possible confusion, we adopt
these conventions: (?42%0ACℎ and (?42%0AC: represent the cutsizes
of SpecPart with the initial solutions generated by hMETIS and
KaHyPar respectively; (?42%0AC represents the best cutsize between
(?42%0ACℎ and (?42%0AC: ; and ℎ"�)�(8 and  0�~%0A8 represent
the best cutsizes generated by running hMETIS and KaHyPar 8 times
with different random seeds respectively.

Statistics ℎ"�)�(5 (?42%0ACℎ ℎ"�)�(20 (?42%0AC20
Benchmark |+ | |� | n = 2/20 n = 2/20 n = 2/20 n = 2/20
sparcT1_core 91976 92827 1073 / 1242 1012 / 903 1066 / 1172 1012 / 903

neuron 92290 125305 260 / 228 252 / 206 260 / 228 252 / 206
stereovision 94050 127085 213 / 129 180 / 91 180 / 129 180 / 91

des90 111221 139557 403 / 377 402 / 358 402 / 377 402 / 358
SLAM_spheric 113115 142408 1061 / 1061 1061 / 1061 1061 / 1061 1061 / 1061
cholesky_mc 113250 144948 301 / 478 285 / 345 285 / 478 285 / 345
segmentation 138295 179051 141 / 112 126 / 78 136 / 112 126 / 78
bitonic_mesh 192064 235328 667 / 554 585 / 483 614 / 554 587 / 483

dart 202354 223301 849 / 546 807 / 543 844 / 540 807 / 540
openCV 217453 284108 535 / 552 510 / 518 511 / 541 510 / 518
stap_qrd 240240 290123 399 / 295 399 / 295 399 / 295 399 / 295
minres 261359 320540 215 / 189 215 / 189 215 / 189 215 / 189

cholesky_bdti 266422 342688 1161 / 1024 1156 / 998 1157 / 947 1156 / 947
denoise 275638 356848 814 / 478 416 / 224 722 / 478 416 / 224

sparcT2_core 300109 302663 1282 / 1630 1244 / 1245 1273 / 1447 1244 / 1245
gsm_switch 493260 507821 5883 / 5352 1852 / 1407 5077 / 5352 1827 / 1407
mes_noc 547544 577664 674 / 632 641 / 617 648 / 632 634 / 617
LU230 574372 669477 3328 / 2710 3273 / 2677 3328 / 2677 3273 / 2677

LU_Network 635456 726999 549 / 528 525 / 524 549 / 528 525 / 524
sparcT1_chip2 820886 821274 1198 / 1023 899 / 783 1198 / 951 899 / 783

directrf 931275 1374742 588 / 343 574 / 295 588 / 295 574 / 295
bitcoin_miner 1089284 1448151 1576 / 1225 1514 / 1225 1489 / 1225 1297 / 1225

Table 4: Statistics of Titan23 suite [8].ℎ"�)�(5 andℎ"�)�(20 represent

the best cutsizes generated by running hMETIS 5 and 20 times with
different random seeds. (?42%0ACℎ represents the cutsize generated by

SpecPart where the hint is obtained from running hMETIS once with

default random seed. (?42%0AC20 represents the cutsize generated by

SpecPart where the hint is the solution corresponding to ℎ"�)�(20.

Statistics  0�~%0A  0�~%0A10 (?42%0AC:
Benchmark # Vertices # Hyperedges n = 2/20 n = 2/20 n = 2/20
industrial01 349927 428676 2910 / 2426 2806 / 2426 2814 / 2401
industrial02 499718 778588 1871 / 1436 1455 / 955 520 / 234
industrial03 522302 553375 10398 / 8628 8720 / 7646 8392 / 6711
industrial04 570076 648667 2232 / 2889 2058 / 2889 2057 / 2369
industrial05 656245 829321 2679 / 1838 2670 / 1838 2670 / 1829
industrial06 733740 796261 10929 / 8321 9852 / 7646 9884 / 7646
industrial07 733740 796261 680 / 560 680 / 560 680 / 560
industrial08 1245270 1262096 39785 / 34659 39518 / 34614 39546 / 34614

Table 5: Statistics of industrial benchmark suite from a leading FPGA

company.  0�~%0A and  0�~%0A10 represent the best cutsize gener-

ated by running KaHyPar once and 10 times respectively. (?42%0AC:
represents the cutsize generated by SpecPart where the hint is obtained

from running KaHyPar once with default random seed.

5.1.1 ISPD98 benchmarks with unit weights: Here we present
results for the ISPD98 VLSI Circuit Benchmark Suitewith unit vertex
weights. In Table 3 we present the solutions generated by SpecPart
and compare them with the corresponding best previously published
solutions, with references to the corresponding publications.
Figures 5(a)-(b) reports the solutions sizes obtained from SpecPart,

6The default parameter setting for hMETIS [7] is: Nruns = 10, CType = 1, RType = 1,
Vcycle = 1, Reconst = 0 and seed = 0. The default configuration file we use for KaHyPar
is cut_rKaHyPar_sea20.ini [40]).
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(a) n = 2. (b) n = 10. (c) n = 2.

(d) n = 10. (e) n = 2. (f) n = 20.

Figure 5: Results of SpecPart on ISPD98 VLSI Circuit Benchmark Suite [4] and Titan23 Suite [8] with different imbalance factors (n).

 0�~%0A5, and ℎ"�)�(5, normalized by the best published solu-
tion sizes. While ℎ"�)�(5 and (mostly)  0�~%0A5 also improve
upon these previous solutions, it can be seen that SpecPart generates
a significant improvement over both KaHyPar and hMETIS on a
number of instances. The reasoning behind picking ℎ"�)�(5 is mo-
tivated by an “iso” (similar) runtime comparison. For these relatively
small instances SpecPart has approximately a 50% runtime overhead
over ℎ"�)�(5, which is subject to significant improvement. This
illustrates that SpecPart can improve very quickly upon solutions

computed under stringent walltime requirements.7

5.1.2 ISPD98 benchmarks with actual weights: We further
verify our framework on the vertex-weighted ISPD98 benchmarks.
Mirroring the considerations of section 5.1.1, the results are presented
in Table 3 and Figures 5(c)-(d). The inclusion of weights makes the
problem more general and potentially more difficult. Here, we see a
tendency of SpecPart to yield bigger improvements.
The Titan23 and Industrial benchmarks are interesting not just

because they are significantly larger than ISPD98, but also because
they are generated by different, more modern synthesis processes.
They hence provide a ‘test of time’ for hMETIS, but also forKaHyPar
which does not include Titan23 in its experimental study [24].

5.1.3 Titan23 benchmarks: Table 4 and Figures 5(e)-(f) show
the results. While the SpecPart runtime overhead over ℎ"�)�(5
remains at around 50%, the runtime of KaHyPar on some of these

7Of course, hMETIS and KaHyPar can be run for more random starts. We include
such an experimental study for the larger and more interesting Titan23 and Industrial
benchmarks, but we omit them for ISPD98.

benchmarks is very large (more than two hours), too high for any rea-
sonable industrial setting (for more details on runtime see [41]). For
this reason we do not compare against KaHyPar. It should be noted
that because we could not find previous published results on Titan23,
Figure 5 reports cut sizes normalized by those obtained by ℎ"�)�(5,
i.e., the best cut size generated by running hMETIS five times with
different random seeds. It can be seen that SpecPart generates sig-
nificantly better partitioning solutions. The improvements are even
more than 50% for benchmarks gsm_switch and denoise. To further
examine the performance of SpecPart, we add these experiments:
(i) run hMETIS twenty times with different random seeds and report
the best cut size ℎ"�)�(20; and (ii) set the solution corresponding to
ℎ"�)�(20 as the initial solution to SpecPart and generate the cutsize
(?42%0AC20. We observe that (?42%0ACℎ is still much better even
compared to ℎ"�)�(20 for almost all the benchmarks. (?42%0AC20
is also better than (?42%0AC5 for some benchmarks. This suggests
that SpecPart can achieve better performance even when standard
partitioners are allowed significantly more running time (see also
Section 5.3).

5.1.4 Industrial benchmarks from a leading FPGA company:
Table 5 presents the results of Industrial Benchmark Suite from
a leading FPGA company. Here we present results for imbalance
factors (n = 2 and 20) as per guidance from our industrial collaborator.
We do not compare against hMETIS because it fails with a segmenta-
tion fault on these benchmarks. KaHyPar remains impractically slow
on these large benchmarks, taking almost one hour on some of the in-
dustrial benchmarks; SpecPart adds less than 5% overhead to single
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(a) Validation of SpecPart default parameter values. (b) Comparison on benchmark sparcT2_core (n = 10). (c) Comparison on benchmark gsm_switch (n = 10).

Figure 6: (a): Validation of SpecPart parameters discussed in Section 5.2. (b,c): QoR vs. runtime overhead of "D;C8-BC0AC -ℎ"�)�( ,

(>;DC8>=->E4A;0~-?0AC , (?42%0ACℎ , and�DC>CD=48 -(?42%0AC ."D;C8-BC0AC -ℎ"�)�( = best cutsize from running hMETISmultiple times with different

random seeds. (>;DC8>=->E4A;0~-?0AC = cutsize from running Cut-Overlay Clustering and Optimal-Attempt Partitioning directly on candidate solutions.

(?42%0ACℎ = cutsize from SpecPart when the initial solution is from one hMETIS run with default random seed. �DC>CD=48 -(?42%0AC = cutsize from

SpecPart when the initial solution is from autotuning of hMETIS with 8 trials.

run of KaHypar. Nevertheless, we allow the very large runtime and
report a comparison with a single run of  0�~%0A and  0�~%0A10
in Table 5. It can be seen that even when the hint is based on a fairly
expensive computation (a single run of KaHyPar), (?42%0AC can still
generate significant improvements even over  0�~%0A10 on some
of the benchmarks, especially industrial05 where the improvement
is more than 50%. We speculate that the improvements would have
been greater if based on a hint provided by hMETIS, which is in
general much faster than KaHyPar.

5.2 Validation of Parameters

We now discuss the effect of tuning parameters on SpecPart. The pa-
rameters we explore are the number of best solutions (X), the number
of iterations of ISSHP (V), the number of random cycles (Z ), and the
threshold of the number of hyperedges in the clustered hypergraph
�2 (W). We define the score value as the average improvement of
(?42%0ACℎ with respect to ℎ"�)�(5 on benchmarks sparcT1_core,
cholesky_mc, segmentation, denoise, gsm_switch and directf. When
we sweep (i.e., vary the value of) one parameter, the remaining pa-
rameters are fixed at their default values (Table 2) and n is set to
20. The results appear in Figure 6(a). Sweeping for X and W did not
change the score value in our experiments. Using< > 2 did not gen-
erate further improvement. We also note that using hMETIS instead
of ILP for Optimal Attempt Partitioning, worsens the score value
by 2.43%. From the results of tuning parameters on SpecPart we
establish that our default parameter setting is a local minimum in the
hyperparameter search space.

5.3 Effect of ISSHP and Solution Enhancement

5.3.1 Effect of ISSHP:. In order to show the effect of ISSHP in the
SpecPart framework, we run Cut-Overlay Clustering and Optimal-
Attempt Partitioning directly on candidate solutions, which are gen-
erated by running hMETIS multiple times with different random
seeds. The flow is as follows. (i) We generate candidate solutions
{(1, (2, ..., (k } by running hMETIS k times with different random

seeds, and report the best cutsize "D;C8-BC0AC-ℎ"�)�( . Here k is
an integer parameter ranging from one to twenty. (ii) We run Cut-
Overlay Clustering and Optimal-Attempt Partitioning directly on
the best five solutions from {(1, (2, ..., (k } and report the cutsize
(>;DC8>=->E4A;0~-?0AC . For each value ofk , we run the above flow

100 times and report the average result in Figures 6(b,c). We observe
that (>;DC8>=->E4A;0~-?0AC is much better than"D;C8-BC0AC-ℎ"�)�( ,
and that SpecPart generates superior solutions in less runtime com-
pared to"D;C8-BC0AC-ℎ"�)�( and (>;DC8>=->E4A;0~-?0AC . This sug-
gests that ISSHP is an important component of SpecPart.

5.3.2 Solution enhancement: hMETIS has parameters whose
setting may significantly impact the quality of generated partition-
ing solutions. We use Ray [42] to tune the following parameters
of hMETIS: CType with possible values {1, 2, 3, 4, 5}, RType with
possible values {1, 2, 3}, Vcycle with possible values {1, 2, 3}, and
Reconst with possible values {0, 1}. The search algorithm we use in
Ray [42] is HyperOptSearch. We set the number of trials to five, ten
and forty, i.e., Ray will launch five, ten and forty runs of hMETIS
with different parameters respectively. We set the number of threads
to ten to reduce the runtime. The results appear in Figures 6(b,c).
Here we normalize the cutsize and runtime to that of running hMETIS
once with default random seed. Autotuning increases the runtime
for hMETIS and computes a better hint (8=8C , yet we see a further 2%
and 4% cutsize improvement from SpecPart for sparcT2_core and
gsm_switch, respectively, lending further support to the observation
in Section 5.1.3.

6 CONCLUSION AND FUTURE DIRECTIONS

We have proposed SpecPart, the first general supervised framework
for hypergraph partitioning solution improvement. Experiments con-
firm its outstanding performance compared to traditional multilevel
partitioners with similar runtime. The code, scripts, and best known
solution vectors are available through [41]. SpecPart opens multiple
future research directions, with its K-way generalization being a pri-
ority. SpecPart can be integrated with the internal levels of multilevel
partitioners; producing improved solutions on each level may lead
to further improved solutions. We also believe that the Cut-Overlay
and Optimal-Attempt Partitioning are of independent interest and
amenable to machine learning techniques.
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