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ABSTRACT
We describe the RDF-2020 release of the IEEE CEDA DATC Robust
Design Flow (RDF). RDF-2020 extends the previous four years of
DATC efforts to (i) preserve and integrate leading research codes,
including from past academic contests, and (ii) provide a founda-
tion and backplane for academic research in the RTL-to-GDS IC
implementation arena. Implementation and analysis flows have
been enhanced by the addition of steps including multi-bit flip-flop
clustering, parasitic extraction and antenna checking, as well as a
recent contest-winning global router. RDF-2020 also opens a new
“Calibrations” direction to support academic research on key analy-
ses such as extraction and timing. An open-source physical design
database with Tcl/Python/C++ APIs, a flow integration into a single
scriptable application, and support for the newly-opened SKY130
manufacturable PDK, are also new this year. Our paper closes with
a discussion of potential future directions for the RDF effort.
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1 INTRODUCTION
IEEE CEDA’s Design Automation Technical Committee (DATC) [1]
has over the past five years developed the DATC Robust Design
Flow (RDF), which aims to facilitate academic research on flow-
scale methodology and cross-stage optimizations in the physical
IC implementation (“RTL-to-GDS”) domain. The RDF mission is to
preserve and integrate leading research codes, including a number
of winning entries from past academic contests, while also establish-
ing a robust foundation for academic RTL-to-GDS research. A series
of papers beginning at ICCAD-2016 [2–6] documents the progress
of the DATC RDF toward (i) providing an academic reference flow
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from logic synthesis to detailed routing based on existing contest
results; (ii) curating a collection of design benchmarks and point
tool libraries; and (iii) connecting academic research to industrial
practice and designs by fully supporting industry-standard design
interchange formats.

A year ago, the focus in RDF-2019 was on vertical and horizontal
extensions to achieve a complete flow with multiple options avail-
able within the tool chain. Key advances included (i) completion of
a full RTL-to-GDS flow, (ii) the first RDF-based tool chain comprised
entirely of open-source components, and (iii) support for a full set
of standard (as opposed to “translated” or “interpreted”) industry
design interchange, library and constraint formats [6].

In the past year, RDF-2020 efforts have filled in and solidified the
RTL-to-GDS implementation flow, adding intermediate flow steps
as well as new tool options. The scope and mission of RDF has also
been updated, bringing new attention to the support of analysis
and verification research, and more clearly documenting a roadmap
of RDF needs and planned enhancements. As detailed below, RDF’s
implementation and analysis flows have been enhanced by the ad-
dition of steps including multi-bit flip-flop clustering, parasitic ex-
traction and antenna checking, as well as a recent contest-winning
global router. RDF-2020 includes a new “Calibrations” direction to
support academic research on key analyses such as parasitic extrac-
tion and static timing. An open-source physical design database
with Tcl/Python/C++ APIs, a flow integration into a single script-
able EDA application, and support for the newly-opened SKY130
manufacturable PDK [16], are also new this year.

In the following, Section 2 reviews the current status of RDF-2020,
focusing on several key updates. Section 3 describes the extraction
and STA calibrations that have been added this year. Last, Section
4 discusses potential futures, including further extensions of RDF
and evolutions of the RDF mission.

2 RDF-2020: UPDATES AND STATUS
In this section, we summarize the key “deltas” seen in RDF-2020.
These include the following.

• A recently open-sourced foundry PDK, SkyWater 130nm (SKY130),
is now supported in RDF.

• The integrated database in the OpenROAD project, OpenDB,
with in-built Tcl, Python and C++ APIs, is added to RDF. This
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Table 1: Overview of the RDF-2020 flow

Component Tool

Logic synthesis Yosys+ABC
Floorplanning TritonFP
Global placement RePlAce, FZUplace, NTUPlace3, ComPLx,

Eh?Placer, FastPlace3-GP, mPL5/6, Capo
Detailed placement OpenDP, MCHL, FastPlace3-DP
Flip-flop clustering Mean-shift, FlopTray
Clock tree synthesis TritonCTS
Global routing FastRoute4-lefdef, NCTUgr, CUGR
Detailed routing TritonRoute, NCTUdr, DrCU
Layout finishing KLayout, Magic
Gate sizing Resizer, TritonSizer
Parasitic extraction OpenRCX
STA OpenSTA, iTimerC
Database OpenDB
Libraries/PDK NanGate45, SKY130, ASAP7, NCTUcell
(integrated app) (OpenROAD app)

eases the task of supporting and integrating into flow studies
numerous past works in the field.

• There has been continued growth of the set of available point
tools or engines, with new additions including the ICCAD-2019
Contest winning global router (CUGR), an antenna-checker,
and two multi-bit flip-flop clustering codes.

• KLayout has been added as a more scalable alternative to Magic
in the layout finishing stage of the RDF flow.

Table 1 summarizes the RDF-2020 flow, highlighting the newly-
included components in boldface.

2.1 Foundry PDK and Enablement
RDF-2019 was previously tested on NanGate45 [22] and ASAP7
[21] PDK and libraries. Neither platform corresponds to a manu-
facturable technology. Furthermore, the ASAP7 license currently
prevents download by commercial entities,1 so only the [22] enable-
ment has been in general use. In this light, it is highly significant
that a foundry-manufacturable 130nm PDK and design enablement
(including cell libraries, IOs, RAM generator, along with signoff and
physical verification kit) was open-sourced by Google and SkyWa-
ter Technology Foundry earlier this year [16]. Below, we describe
RDF-2020 support and example results on the three enablements
[16, 21, 22].

2.2 NCTUcell Standard Cell Library
Multi-bit flip-flop (MBFF) is a key physical design lever used to
reduce power without large performance degradation. In previous
cell libraries used with RDF, no MBFF cells are available. In RDF-
2020, NCTUcell [11] has been successfully used to synthesize 2-bit
and 4-bit MBFF cells – which are the most commonly-used MBFF
sizes – on the ASAP7 and NanGate45 (FreePDK45) PDKs. ASAP7
is a FinFET technology while FreePDK45 is a planar transistor
technology; there are many differences between the design rules
of these PDKs. One major distinction is that uniform and aligned
gates are required in ASAP7, but are not necessary in FreePDK45.
1We hope that this will change before publication of our paper.

Figure 1: Synthesized 4-bit MBFFs for (a) FreePDK45 and (b)
ASAP7.
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Figure 2: Incremental shared netlist structure in
OpenDB [17]. The thin blue arrows illustrate the func-
tion or API calls and the thick blue arrow illustrates the
overall flow from logic synthesis through detailed routing.

A second distinction is that poly is an available routing layer in
FreePDK45, but this is not the case in ASAP7. The NCTUcell tool
was initially designed for FinFET technologies. With respect to the
first distinction above, NCTUcell can satisfy requirements of the
design rule set in FreePDK45, but is not capable of optimizing non-
uniform gate placement. With respect to the second distinction,
FreePDK45 allows use of the poly layer to connect continuous gates,
and ASAP7 has a related M0 layer, called LIG, for the same purpose.
Thus, the existing routing utility in NCTUcell can be applied to
handle the design rule set of FreePDK45. Figure 1 shows the layouts
of 4-bit flip-flop (FF) cells for FreePDK45 and ASAP7.

2.3 OpenDB Database
OpenDB [18] [17] is a new open-source physical implementation
database that holds all essential data for the physical design creation
flow (floorplan, global and detailed placement, CTS, and global
and detailed routing) as well as timing and power analyses. The
underlying data model of OpenDB is similar to that of the LEF/DEF
exchange formats, or the well-known OpenAccess database [24]. A
significant current limitation is that OpenDB has a flattened netlist
structure; implementation of a hierarchical netlist structure is an
important future extension.

Figure 2 shows the highly incremental, shared netlist architec-
ture of a modern back-end EDA tool. OpenDB underlies this picture.
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The open-sourced timer, OpenSTA [27], is intimately connected
with OpenDB such that both timing graph and physical design
information are accessible to tools such as a sizing optimizer. The
shared netlist data structure enables in-memory communication
between tools and the speed improvements that make tight incre-
mental optimization loops feasible. Since the release of OpenDB,
nearly 20 distinct projects have now been integrated into a single bi-
nary, referred to as the OpenROAD top-level app. Redundancies
and inconsistencies such as multiple LEF/DEF readers and writers,
as well as file-based or name-based communication between flow
steps, have been eradicated. Instead, all projects utilize OpenDB’s
data structure, via C++ and Tcl APIs. Note that our latest RDF-2020
contains the OpenROAD top-level app, which is built on OpenDB.
We have added wrappers that enable multiple flip-flop clustering
tools’ outputs (see below) to be properly updated into OpenDB.

In a recent DAC-2020 tutorial [30], several examples of OpenDB
usage are provided as examples of using OpenDB Tcl and C++
APIs. The pdngen and tapcell applications are part of the Open-
ROAD top-level app and use the OpenDB Tcl API exclusively. The
ClipGraphExtract demonstrates how to add a tool into the Open-
ROAD top-level app using theOpenDBC++API. ClipGraphExtract
takes LEF/DEF and clip coordinates, and generates the edge list
(e.g., an instance-instance pair) within the given clip coordinates.
The edge list can be part of a dataset used to train, e.g., graph neural
networks (GNN) or graph convolution network (GCN) on clip-wise
predictions.

2.4 Post-Placement Flip-Flop Clustering
RDF-2020 flow includes an MBFF clustering stage after placement.
It clusters flip-flops in the given placement and generates MBFF-
mapped netlist and DEF. The goal is to minimize clock power by
reducing the number of clock sinks and thereby the total sink pin
capacitance. The clustering can be enabled or disabled via flow
configuration. The following two flip-flop clustering algorithms
have been added into the RDF-2020 flow.

2.4.1 Mean-Shift Clustering. Given a timing-optimized placement,
creating large clusters or dragging outliers far away inevitably
causes large disruption to placement thus incurring significant
timing degradation and timing ECO efforts.

For reducing clock power while minimizing timing degradation,
effective mean shift naturally forms clusters according to flip-flop
distribution without placement disruption [32, 33]. By augment-
ing classic mean shift algorithm with special treatments, effective
mean shift fulfills the requirements to be a good flip-flop clustering
algorithm because it needs no pre-specified number of clusters,
is insensitive to initialization, is robust to outliers, is tolerant of
various register distributions, is efficient and scalable, and balances
clock power reduction against timing degradation.

2.4.2 Flop-Tray Clustering. The “flop-tray” clustering method of
[31] uses combinatorial methods to solve the “chicken-and-egg”
loop between flop-tray generation (i.e., MBFF clustering) and place-
ment optimization, and to achieve improved solution quality espe-
cially when a range of MBFF sizes is available. For each given MBFF
size (e.g., 4-bit, 8-bit, etc.), capacitated K-means clustering (min-cost
flow) is used to cluster the FFs, and linear programming is used to

determine best locations for the MBFF instances that correspond
to FF clusters, taking into account the footprint (aspect ratio) of
the MBFF. An integer linear program is then used to determine
the combination of MBFF sizes and placements that minimizes FF
displacements, timing impacts and number of isolated sinks.

2.5 Global and Detailed Routing
CUGR [36] was the winning entry in the ICCAD 2019 Open-Source
LEF/DEF Based Global Routing Contest that was organized by
Mentor, Cadence and UCSD [38]. CUGR has been open-sourced by
its authors [37], and is another welcome instance (complementing
FastRoute4-lefdef) of the bridge between academic placement and
detailed routing that can be run in a full industry enablement.

CUGR performs two techniques: 3D pattern routing and multi-
level 3D maze routing. The 3D pattern routing combines pattern
routing and layer assignment. The multi-level 3D maze routing has
different cost functions on each level, enabling efficient searches
for best-cost routes. CUGR reads in LEF/DEF using Rsyn [41],
which could in future be evolved to use the LEF/DEF readers in
OpenDB/OpenROAD. Currently, RDF-2020 can utilize the CUGR
binary to run the global routing in the flow.

2.6 Other Additions
Several other noteworthy additions to RDF-2020, via the Open-
ROAD project, are the following.
KLayout [23] is used for layout finishing, dummy fill, streamout
and other tapeout-related functions. In particular, within the RTL-
to-GDS flow, it produces the final GDS from the DEF layouts and
the GDS of design instances. Dummy metal fill has also been imple-
mented in KLayout, although this functionality may soon migrate
from KLayout to a standalone dummy fill generator.
OpenRCX [19] is an open-source 2.5-D parasitic extraction de-
veloped by a mid-2000s EDA startup, Athena Design Systems, Inc.
Initially, the extraction engine was developed and supported up
through customer engagements at 90nm technology nodes. Since
the code was open-sourced in Dec. 2019, it has been improved to
support current commercial FinFET technologies. OpenRCX is in-
tegrated into the OpenROAD top-level app, and is also separately
available in a public repository [19]. Calibrations versus foundry
technologies have been performed on the FreePDK45 and SKY130.
ARC [20] is an open-source antenna rull checker running on global
or detailed routed designs. It supports PAR (partial area ratio check)
and a subset of CAR (cumulative area ratio check) types antenna
ratio rules. PAR rules pertain to any single metallization step, while
CAR rules take into account a current metal layer and the layers
below it.

Given post-route information in OpenDB, ARC generates an
undirected wire-graph where the nodes represent elements of metal
interconnections and the edges represent connections in the wire
(VIAs, METALs). ARC can generate a report to indicate nets that
violate antenna rules. APIs are provided as an interface to preemp-
tively fix antenna violations (e.g., by bridging in an incremental
global routing step) or to accomplish diode insertion (which invokes
incremental netlist update, placement legalization and global rout-
ing). ARC was introduced as a tutorial example for the OpenROAD
top-level app’s Tcl API in [30].
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(a) (b)

Figure 3: Correlation analysis results on jpeg_encoder with
NanGate45. (a) Endpoint slack comparison between Open-
STA [27] and commercial timing analysis results. (b) Error
distribution from (a).

3 A NEW DIRECTION: ANALYSIS AND
VERIFICATION

An important direction for the evolution of the DATC RDF is to
close academic research enablement gaps in the analysis and verifi-
cation arena. For example, RDF does not have any tools to perform
DRC/LVS checking, and this is not an active area of academic re-
search. In this section, we first discuss a gap that is newly addressed
in RDF-2020, namely, that academic research on parasitic extraction
and static timing analysis is uncalibrated: the tools accept inputs
and generate outputs, but there are no standard calibration datasets
against which improvements can steadily be made. We also discuss
additional gaps and calibration opportunities for analysis and ver-
ification, notably signal integrity, power integrity and DRC/LVS
checking.

3.1 Calibrations
In the past year, RDF-2020 has added calibrations for two basic
electrical analyses – parasitic estimation and static timing analysis
– using publicly-available enablements (NanGate45, SKY130). Our
hope is that these calibration datasets will help boost the research
community’s advancement along the axes of accuracy, turnaround
time, and capacity for these fundamental analyses that inform IC
physical implementation. We also believe that the DATC RDF can
provide a repository for an ever-growing collection of such analysis
calibration data.

With respect to calibration of timing analysis, the calibration
data can begin with Verilog (.v), timing constraints (.sdc), routed
.def, and an extracted .spef.2 From these inputs, golden calibration
results of static timing analysis can be compiled from any source
timing analysis tool.

Our initial data compilation uses four DRV-free routed DEFs pro-
duced by the OpenROAD flow: aes_cipher_top and jpeg_encoder
designs [26], in each of the SKY130 [16] and NanGate45 [22] enable-
ments. Golden calibration data is abstracted and anonymized using

2The .spef is itself taken from our calibration data for parasitic extraction, which
is edited (and, which is optionally obfuscated by small zero-mean perturbations) to
anonymize any source extraction tool.

=========================================================
aes_cipher_top (freepdk45) Summary

=========================================================
WNS: -0.230
TNS: -10.560
FEP: 139
---------------------------------------------------------
aes_cipher_top (freepdk45) top1 worst timing path

---------------------------------------------------------
Startpoint: _28827_/Q (Falling)
Endpoint: _28884_/D (Rising)
Path Group: reg2reg

Delay    Time   Description
---------------------------------------------------------

0.00    0.00 ^ clk
0.01    0.01 ^ clkbuf_0_clk/A (BUF_X4)
0.03    0.04 ^ clkbuf_0_clk/Z (BUF_X4)

...
0.00    1.54 ^ _28884_/D (DFF_X1)

1.54   data arrival time

0.00    1.00 ^ clk
0.01    1.01 ^ clkbuf_0_clk/A (BUF_X4)
0.03    1.03 ^ clkbuf_0_clk/Z (BUF_X4)

...
-0.04    1.31   library setup time

1.31   data required time
---------------------------------------------------------

1.31   data required time
1.54   data arrival time

---------------------------------------------------------
-0.23   slack (VIOLATED)

Figure 4: Example timing analysis calibration data. The tim-
ing report viewer produces this OpenSTA-style [27] format
from the 5-worst JSON.

a 5-worst JSON format, which we use to hold block-level worst (neg-
ative) slack, total negative slack, and number of failing endpoints
(i.e., standard WNS, TNS and FEP metrics), along with detailed
information for the top-5 worst timing paths (including arc delays
and pin arrival times). We provide a timing report viewer that reads
5-worst JSON-formatted data and prints out a timing report in the
OpenSTA tool’s [27] report format, as shown in Figure 4.

To facilitate other calibrations of interest, we also propose an
endpoints JSON format, which can capture setup slack values at
every flip-flop D pin. As shown in Figure 3, we can compare the
endpoint slacks from OpenSTA [27] with calibration endpoint slack
values (in the plot shown, the calibration values are obtained with
signal integrity option disabled). For these examples, all Verilog,
DEF, SPEF, SDC, 5-worst JSON, endpoints JSON, and timing report
viewer are open-sourced in [29].

3.2 Further Calibrations
In the electrical analysis and verification area, RDF-2020 calibra-
tions do not yet touch signal integrity, power integrity or power
analyses. In future iterations of RDF, we plan to add analysis calibra-
tions according to the sequence: (i) static IR drop map, (ii) vectorless
dynamic power, and (iii) vectorless dynamic IR drop map. Our cur-
rent strategy of mapping information from source analysis reports
to a generic JSON format, adding obfuscations (e.g., random small
perturbations) as needed, readily extends to these future calibra-
tions.

Near-term extensions of our initial RCX and STA calibrations
include (i) signal integrity analysis in STA, and (ii) current source
model-based delay calculation. The latter may build on the recent
TAU-2020 Contest [39]. We note that data collected for any of the
above calibrations can also serve as a training / testing foundation
for development of separate machine learning capabilities, e.g., to
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shift the cost-vs.-accuracy tradeoff in performance estimation, or to
improve design closure. Other opportunities for machine learning
in the RDF context are discussed in Section 4.3 below.3

4 FUTURE SCOPE: RESEARCH CHALLENGES
AND EXTENSIONS

RDF-2020’s coverage of the RTL-to-GDS implementation flow largely
satisfies the original RDF goal. Of course, functionality and solution
quality should continue to be improved on both the implementa-
tion and analysis/verification sides of RDF. At the same time, there
is now an opportunity to begin evolving RDF less reactively (e.g.,
adding new tools as a function of the contests held in the previous
year by major conferences), and more proactively. In this section,
we outline several research challenges and extensions that are of
particular interest for RDF’s future.

4.1 Non-Integer Multiple-Height Cells
Typical standard cell libraries provide multiple standard cell archi-
tectures, e.g., smaller track heights (6T/8T) for high-density designs,
and larger heights (7.5T/12T) for high-speed designs. Designers
usually adopt a single type for ease of design, based on the de-
sign objective. However, leveraging the non-integer multiple-height
(NIMH ) cells entirely can give more room to optimize PPA, pro-
viding larger solution space and so better QoR. Dobre et al. [35]
showed that, in a 28nm industrial node, using both 12T and 8T cells
in a circuit can reduce the total cell area by 25% without sacrificing
performance, compared to using only 12T cells. Compared to 8T im-
plementation, NIMH improved performance by 20% with a similar
area. Nevertheless, few works address NIMH design methodology
from synthesis through placement and routing.

4.2 Logic Locking for Hardware Security
During the past decade, hardware security research has produced
a broad portfolio of approaches to counteract piracy of semicon-
ductor chips. Logic locking has emerged as a particularly appealing
technique that focuses on preventing unauthorized use of hardware
intellectual property (IP). The method hides the oracle behavior of a
design by instrumenting a logic that encrypts its core functionality.
The activation of a fabricated chip’s correct function requires a
digital key, shared by the IP holder. The evolving research in the
field spans multiple vectors: it iterates over devising locking tech-
niques [42], assessing their resilience to an attack model [43, 44],
and responding with attack-mitigating remedies [45, 46].

Due to the diverse and incremental nature of the developed ap-
proaches, the progress in the field would benefit from a common
platform that reconciles assumptions and simplifies sharing of open-
source. For example, reverse engineering logic camouflaged with
light-weight synthesis [47] may over-simplify the attacking barri-
ers; logic post-processed with the aggressive circuit restructuring
of DATC RDF would present an additional overhead to restore the
original representation of the embedded locked mechanism. The

3Here, we do not discuss physical verifications such as design rule checking (DRC),
layout versus schematic checking (LVS), or related functions such as lithography
simulation. However, in the past these have been the subject of academic contests
and very active academic research, and the collection of calibration data to support
academic researchers may be of interest.

(a) (b)

Figure 5: (a) Tree of flow stages, and options at each stage.
Each leaf in the tree is a potential flow outcome. (b) A
“smart flow” might apply the go-with-the-winners para-
digm, where most-promising solutions at a given flow stage
are cloned andpassed on to the next flow stage. (Source: [12])

relevance of assumptions may also be vulnerable to the expand-
ing scope of state-of-the-art design automation. For example, the
assumed limitation that oracle design behavior is available to an
intruder only in the observational form of sample responses – and
not as the explicit representation of its function – may not hold over
time. The upcoming advances can render such a restriction too con-
servative, as the learning of a Boolean function from input-output
pairs becomes more feasible [48].

4.3 A “Smart” RDF Flow
Having a complete flow, with multiple tool options and “recipes”
at each flow stage, begs the question: How should RDF be best
applied to meet a given (performance, power, area density) target
for a given design? This gives rise to a “smart RDF flow” challenge.
Figure 5(a), reproduced from [12], cartoons the tree of potential
flow-stage recipes and eventual flow outcomes. A simple smart
RDF flow might follow the “go-with-the-winners” (GWTW) strat-
egy [13], launching multiple optimization threads, and periodically
identifying and cloning the most promising thread(s) while termi-
nating other threads (Figure 5(b)). The (machine learning) research
challenge is to learn how to identify “most promising” states of
the design at key junctures (floorplan, global placement, post-CTS,
post-global route). Reinforcement learning (e.g., multi-armed bandit
methods [40]) might also be used to develop a smart RDF flow.

4.4 Further Challenges and Extensions
Beyond the directions listed above, DATC members have compiled
the following list of additional opportunities. We look forward to
prioritizing or even incentivizing these improvements to RDF, in
collaboration with the EDA community.
• DFT support is currently missing from RDF. A routability-
and/or timing-aware multiple scan chain ordering engine [14]
can be one initial target, possibly building on the recently-
released Fault package [15].

• Clock gating synthesis is also missing. Currently, no public
logic synthesizer/optimizer can generate clock gating, although
it is a standard, pervasive design practice to minimize clock
switching power.
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• Gate-level vector-based power estimation is an important anal-
ysis for which both tools and calibration data might be added to
the RDF flow, following the trajectory of Subsection 3.2 above.

• Several fundamental optimizations are currently “covered” in
RDF-2020 but with much of room left for QoR improvement.
Clock tree synthesis (where clock skew scheduling is currently
missing) and gate sizing (where multi-corner sizing optimiza-
tion is currently missing) are two examples.

• Combining sizing / VT-swap with (incremental) routing and
cell movement (cf. the ICCAD-2020 Contest Problem B [28]) is
a key challenge for advanced-node physical design that is now
more accessible with the OpenDB-based incremental shared
netlist structure.

• Finally, a longer-term goal is to support more open, standard-
ized modeling frameworks to support physical design research.
Domains such as device modeling are well-served by industry
consortia, with numerous public standards (BSIM, PSP, etc.).
However, areas such as interconnect parasitic modeling, OPC
(resist and source) modeling, or CMP (planarization) modeling
have no available standard, which blocks both research and
research-industry collaborations.

5 CONCLUSION
Several significant developments from the past year are seen in
RDF-2020. These include flow integration onto a freely distributable
backplane of database and timer, with an incremental shared netlist
architecture; bringup of the RDF flow onto the manufacturable
SKY130 PDK; initiation of support for analysis calibrations; and
further horizontal and vertical additions to RDF. We also describe
several research challenges now addressable by the research com-
munity with RDF-2020, along with potential future extensions. RDF
will explore these and other directions of growth as it continues to
improve its support of academic physical design research.
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